A Keygraph Classification Framework for Real-Time Object Detection

نویسندگان

  • Marcelo Hashimoto
  • Roberto M. Cesar
چکیده

In this paper, we propose a new approach for keypoint-based object detection. Traditional keypoint-based methods consist in classifying individual points and using pose estimation to discard misclassifications. Since a single point carries no relational features, such methods inherently restrict the usage of structural information to the pose estimation phase. Therefore, the classifier considers purely appearance-based feature vectors, thus requiring computationally expensive feature extraction or complex probabilistic modelling to achieve satisfactory robustness. In contrast, our approach consists in classifying graphs of keypoints, which incorporates structural information during the classification phase and allows the extraction of simpler feature vectors that are naturally robust. In the present work, 3-vertices graphs have been considered, though the methodology is general and larger order graphs may be adopted. Successful experimental results obtained for real-time object detection in video sequences are reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Cost UAV-based Remote Sensing for Autonomous Wildlife Monitoring

In recent years, developments in unmanned aerial vehicles, lightweight on-board computers, and low-cost thermal imaging sensors offer a new opportunity for wildlife monitoring. In contrast with traditional methods now surveying endangered species to obtain population and location has become more cost-effective and least time-consuming. In this paper, a low-cost UAV-based remote sensing platform...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Change Detection Gamasiab River Margins in Kermanshah by Comparison Pixel Base and Object Orientd Algorithms

Introduction Land use reflects the interactive characteristics of humans and the environment and describes how human exploitation works for one or more targets on the ground. Land use is usually defined on the basis of human use of the land, with an emphasis on the functional role of land in economic activities. Land use, which is associated with human activity, is undergoing change over time....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0901.4953  شماره 

صفحات  -

تاریخ انتشار 2009